CO2 & CO2 Intensity comparison between different MR and Panamax Tanker routes¶
In this notebook, we will show a use case of including Vessel Emissions API in your workflow. We will use Voyages API to get all voyages in MR and Panamax Tanker routes for the past two years and then use Vessel Emissions API to get the emissions for these voyages. Finally we will perform some Exploratory Data Analysis on the acquired emissions data and visualize our findings.
Setup¶
Install the Signal Ocean SDK:
pip install signal-ocean
Set your subscription key acquired here: https://apis.signalocean.com/profile
In [ ]:
Copied!
pip install signal-ocean
pip install signal-ocean
In [1]:
Copied!
signal_ocean_api_key = '' #replace with your subscription key
signal_ocean_api_key = '' #replace with your subscription key
Import helpful modules¶
In [2]:
Copied!
from datetime import date, timedelta
from tqdm import tqdm
import requests
import json
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
import numpy as np
sns.set_theme()
sns.set_style("whitegrid")
from datetime import date, timedelta
from tqdm import tqdm
import requests
import json
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
import numpy as np
sns.set_theme()
sns.set_style("whitegrid")
Input Data¶
1. Load route definitions for MR and Panamax Tanker vessels¶
In [3]:
Copied!
mr_panamax_tanker_routes = [
{
'Type': 'Clean',
'LoadArea': 'East Mediterranean',
'DischargeArea': 'Central Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 1'
},
{
'Type': 'Clean',
'LoadArea': 'Baltic Sea Upper',
'DischargeArea': 'Continent',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 2'
},
{
'Type': 'Clean',
'LoadArea': 'West Mediterranean',
'DischargeArea': 'Central Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 3'
},
{
'Type': 'Clean',
'LoadArea': 'West Mediterranean',
'DischargeArea': 'Continent',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 4'
},
{
'Type': 'Dirty',
'LoadArea': 'Continent',
'DischargeArea': 'Central Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 5'
},
{
'Type': 'Dirty',
'LoadArea': 'Baltic Sea Upper',
'DischargeArea': 'Continent',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 6'
},
{
'Type': 'Clean',
'LoadArea': 'Black Sea',
'DischargeArea': 'West Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 7'
},
{
'Type': 'Clean',
'LoadArea': 'Continent',
'DischargeArea': 'East Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 8'
},
{
'Type': 'Clean',
'LoadArea': 'Continent',
'DischargeArea': 'US Atlantic Coast',
'VesselClass': 'PanamaxTanker',
'VesselClassID': 87,
'RouteID': 'PT - 1'
},
{
'Type': 'Clean',
'LoadArea': 'Continent',
'DischargeArea': 'Africa Atlantic Coast',
'VesselClass': 'PanamaxTanker',
'VesselClassID': 87,
'RouteID': 'PT - 2'
},
{
'Type': 'Clean',
'LoadArea': 'West Mediterranean',
'DischargeArea': 'US Atlantic Coast',
'VesselClass': 'PanamaxTanker',
'VesselClassID': 87,
'RouteID': 'PT - 3'
}
]
mr_panamax_tanker_routes_df = pd.DataFrame.from_records(mr_panamax_tanker_routes)
mr_panamax_tanker_routes = [
{
'Type': 'Clean',
'LoadArea': 'East Mediterranean',
'DischargeArea': 'Central Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 1'
},
{
'Type': 'Clean',
'LoadArea': 'Baltic Sea Upper',
'DischargeArea': 'Continent',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 2'
},
{
'Type': 'Clean',
'LoadArea': 'West Mediterranean',
'DischargeArea': 'Central Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 3'
},
{
'Type': 'Clean',
'LoadArea': 'West Mediterranean',
'DischargeArea': 'Continent',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 4'
},
{
'Type': 'Dirty',
'LoadArea': 'Continent',
'DischargeArea': 'Central Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 5'
},
{
'Type': 'Dirty',
'LoadArea': 'Baltic Sea Upper',
'DischargeArea': 'Continent',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 6'
},
{
'Type': 'Clean',
'LoadArea': 'Black Sea',
'DischargeArea': 'West Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 7'
},
{
'Type': 'Clean',
'LoadArea': 'Continent',
'DischargeArea': 'East Mediterranean',
'VesselClass': 'MR1',
'VesselClassID': 89,
'RouteID': 'MR1 - 8'
},
{
'Type': 'Clean',
'LoadArea': 'Continent',
'DischargeArea': 'US Atlantic Coast',
'VesselClass': 'PanamaxTanker',
'VesselClassID': 87,
'RouteID': 'PT - 1'
},
{
'Type': 'Clean',
'LoadArea': 'Continent',
'DischargeArea': 'Africa Atlantic Coast',
'VesselClass': 'PanamaxTanker',
'VesselClassID': 87,
'RouteID': 'PT - 2'
},
{
'Type': 'Clean',
'LoadArea': 'West Mediterranean',
'DischargeArea': 'US Atlantic Coast',
'VesselClass': 'PanamaxTanker',
'VesselClassID': 87,
'RouteID': 'PT - 3'
}
]
mr_panamax_tanker_routes_df = pd.DataFrame.from_records(mr_panamax_tanker_routes)
APIs initialization and definition of helper functions for feature engineering¶
Initialize Vessel Emissions API¶
In [4]:
Copied!
from signal_ocean import Connection
from signal_ocean.vessel_emissions import VesselEmissionsAPI
connection = Connection(signal_ocean_api_key)
emissions_api = VesselEmissionsAPI(connection)
from signal_ocean import Connection
from signal_ocean.vessel_emissions import VesselEmissionsAPI
connection = Connection(signal_ocean_api_key)
emissions_api = VesselEmissionsAPI(connection)
Initialize Voyages API¶
In [5]:
Copied!
from signal_ocean.voyages import VoyagesAPI
voyages_api = VoyagesAPI(connection)
from signal_ocean.voyages import VoyagesAPI
voyages_api = VoyagesAPI(connection)
Define Helper functions¶
In [6]:
Copied!
def get_voyage_load_port(voyage_events):
return next((e.port_name for e in voyage_events or [] if e.purpose=='Load'), None)
def get_voyage_discharge_port(voyage_events):
return next((e.port_name for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None)
def get_voyage_load_area(voyage_events):
return next((e.area_name_level0 for e in voyage_events or [] if e.purpose=='Load'), None)
def get_voyage_discharge_area(voyage_events):
return next((e.area_name_level0 for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None)
def get_voyage_load_area_id(voyage_events):
return next((e.area_idlevel0 for e in voyage_events or [] if e.purpose=='Load'), None)
def get_voyage_discharge_area_id(voyage_events):
return next((e.area_idlevel0 for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None)
def convert_comma_separated_str_to_list(comma_str: str) -> list:
return [item.strip() for item in comma_str.split(",")]
def get_voyage_load_port(voyage_events):
return next((e.port_name for e in voyage_events or [] if e.purpose=='Load'), None)
def get_voyage_discharge_port(voyage_events):
return next((e.port_name for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None)
def get_voyage_load_area(voyage_events):
return next((e.area_name_level0 for e in voyage_events or [] if e.purpose=='Load'), None)
def get_voyage_discharge_area(voyage_events):
return next((e.area_name_level0 for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None)
def get_voyage_load_area_id(voyage_events):
return next((e.area_idlevel0 for e in voyage_events or [] if e.purpose=='Load'), None)
def get_voyage_discharge_area_id(voyage_events):
return next((e.area_idlevel0 for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None)
def convert_comma_separated_str_to_list(comma_str: str) -> list:
return [item.strip() for item in comma_str.split(",")]
Use Case Description¶
Visualizing CO2 Emissions for a number of Tanker routes¶
Get voyages for MR and Panamax Tanker routes over the past 2 years¶
In [8]:
Copied!
distinct_vessel_classes = np.unique([route.get('VesselClassID') for route in mr_panamax_tanker_routes])
date_from = date.today() - timedelta(days=2*365)
voyages = {}
for vessel_class_id in tqdm(distinct_vessel_classes):
voyages[vessel_class_id] = voyages_api.get_voyages(vessel_class_id=vessel_class_id, date_from=date_from)
distinct_vessel_classes = np.unique([route.get('VesselClassID') for route in mr_panamax_tanker_routes])
date_from = date.today() - timedelta(days=2*365)
voyages = {}
for vessel_class_id in tqdm(distinct_vessel_classes):
voyages[vessel_class_id] = voyages_api.get_voyages(vessel_class_id=vessel_class_id, date_from=date_from)
100%|█████████████████████████████████████████████| 2/2 [02:47<00:00, 83.61s/it]
Load data into a pandas DataFrame and apply feature engineering¶
In [9]:
Copied!
voyages_df = pd.DataFrame(v.__dict__ for vessel_class_voyages in voyages.values() for v in vessel_class_voyages)
voyages_df['load_port'] = voyages_df['events'].apply(get_voyage_load_port)
voyages_df['discharge_port'] = voyages_df['events'].apply(get_voyage_discharge_port)
voyages_df['load_area'] = voyages_df['events'].apply(get_voyage_load_area)
voyages_df['discharge_area'] = voyages_df['events'].apply(get_voyage_discharge_area)
voyages_df.loc[voyages_df['trade'] == 'Product', 'trade'] = 'Clean'
voyages_df.loc[voyages_df['trade'] == 'Crude', 'trade'] = 'Dirty'
voyages_df = pd.DataFrame(v.__dict__ for vessel_class_voyages in voyages.values() for v in vessel_class_voyages)
voyages_df['load_port'] = voyages_df['events'].apply(get_voyage_load_port)
voyages_df['discharge_port'] = voyages_df['events'].apply(get_voyage_discharge_port)
voyages_df['load_area'] = voyages_df['events'].apply(get_voyage_load_area)
voyages_df['discharge_area'] = voyages_df['events'].apply(get_voyage_discharge_area)
voyages_df.loc[voyages_df['trade'] == 'Product', 'trade'] = 'Clean'
voyages_df.loc[voyages_df['trade'] == 'Crude', 'trade'] = 'Dirty'
Get emisssions for the selected voyages¶
In [10]:
Copied!
from requests.exceptions import HTTPError
from json import JSONDecodeError
emissions_per_route = pd.DataFrame()
for route in mr_panamax_tanker_routes:
route_emissions = []
load_areas = convert_comma_separated_str_to_list(route.get('LoadArea'))
discharge_areas = convert_comma_separated_str_to_list(route.get('DischargeArea'))
vessel_class_id = route.get('VesselClassID')
trade = route.get('Type')
voyages_in_route = voyages_df[
(voyages_df['load_area'].isin(load_areas))\
& (voyages_df['discharge_area'].isin(discharge_areas))\
& (voyages_df['vessel_class_id']==vessel_class_id)\
& (voyages_df['trade']==trade)
]
for voyage in tqdm(voyages_in_route.to_dict(orient='records')):
# Get emissions for all voyages_in_route
try:
voyage_emissions = emissions_api.get_emissions_by_imo_and_voyage_number(
imo=voyage.get('imo'),
voyage_number=voyage.get('voyage_number'),
include_distances=True,
include_efficiency_metrics=True
)
if voyage_emissions:
route_emissions.append(voyage_emissions.to_dict())
# except for those that have not been calculated yet
except (HTTPError, JSONDecodeError):
print(f"Emissions for IMO: {voyage.get('imo')} Voyage Number: {voyage.get('voyage_number')} are not calculated yet")
if len(route_emissions) > 0:
route_emissions_df = pd.json_normalize(route_emissions, sep='')
route_emissions_df['RouteID'] = route.get('RouteID')
emissions_per_route = pd.concat([emissions_per_route, route_emissions_df])
from requests.exceptions import HTTPError
from json import JSONDecodeError
emissions_per_route = pd.DataFrame()
for route in mr_panamax_tanker_routes:
route_emissions = []
load_areas = convert_comma_separated_str_to_list(route.get('LoadArea'))
discharge_areas = convert_comma_separated_str_to_list(route.get('DischargeArea'))
vessel_class_id = route.get('VesselClassID')
trade = route.get('Type')
voyages_in_route = voyages_df[
(voyages_df['load_area'].isin(load_areas))\
& (voyages_df['discharge_area'].isin(discharge_areas))\
& (voyages_df['vessel_class_id']==vessel_class_id)\
& (voyages_df['trade']==trade)
]
for voyage in tqdm(voyages_in_route.to_dict(orient='records')):
# Get emissions for all voyages_in_route
try:
voyage_emissions = emissions_api.get_emissions_by_imo_and_voyage_number(
imo=voyage.get('imo'),
voyage_number=voyage.get('voyage_number'),
include_distances=True,
include_efficiency_metrics=True
)
if voyage_emissions:
route_emissions.append(voyage_emissions.to_dict())
# except for those that have not been calculated yet
except (HTTPError, JSONDecodeError):
print(f"Emissions for IMO: {voyage.get('imo')} Voyage Number: {voyage.get('voyage_number')} are not calculated yet")
if len(route_emissions) > 0:
route_emissions_df = pd.json_normalize(route_emissions, sep='')
route_emissions_df['RouteID'] = route.get('RouteID')
emissions_per_route = pd.concat([emissions_per_route, route_emissions_df])
75%|██████████████████████████████▉ | 399/529 [02:45<00:45, 2.87it/s]
Emissions for IMO: 9538165 Voyage Number: 181 are not calculated yet
100%|█████████████████████████████████████████| 529/529 [03:31<00:00, 2.50it/s] 100%|█████████████████████████████████████████| 348/348 [02:28<00:00, 2.34it/s] 100%|███████████████████████████████████████████| 83/83 [00:31<00:00, 2.63it/s] 1%|▏ | 1/186 [00:00<01:02, 2.94it/s]
Emissions for IMO: 9237008 Voyage Number: 222 are not calculated yet
27%|███████████▎ | 50/186 [00:18<00:50, 2.69it/s]
Emissions for IMO: 9357559 Voyage Number: 244 are not calculated yet
100%|█████████████████████████████████████████| 186/186 [01:10<00:00, 2.65it/s] 100%|███████████████████████████████████████████| 14/14 [00:05<00:00, 2.55it/s] 74%|███████████████████████████████▉ | 49/66 [00:18<00:06, 2.76it/s]
Emissions for IMO: 9696565 Voyage Number: 166 are not calculated yet
100%|███████████████████████████████████████████| 66/66 [00:25<00:00, 2.61it/s] 100%|███████████████████████████████████████████| 21/21 [00:08<00:00, 2.49it/s] 100%|███████████████████████████████████████████| 29/29 [00:12<00:00, 2.42it/s] 100%|█████████████████████████████████████████████| 8/8 [00:03<00:00, 2.61it/s] 43%|██████████████████▏ | 73/169 [00:28<00:37, 2.57it/s]
Emissions for IMO: 9407847 Voyage Number: 133 are not calculated yet
100%|█████████████████████████████████████████| 169/169 [01:05<00:00, 2.57it/s] 100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 2.90it/s]
Visuals¶
1) CO2 Emissions per Route¶
In [11]:
Copied!
emissions_per_route['TransportWork'] = emissions_per_route['DistancesVoyageDistanceTravelled'] * emissions_per_route['Deadweight']
aer_per_route = emissions_per_route.groupby('RouteID').agg({'EmissionsVoyageCO2InTons': np.sum, 'TransportWork': np.sum})
aer_per_route['AER'] = aer_per_route['EmissionsVoyageCO2InTons'] * 10 ** 6 / aer_per_route['TransportWork']
aer_per_route.reset_index(inplace=True)
emissions_per_route['TransportWork'] = emissions_per_route['DistancesVoyageDistanceTravelled'] * emissions_per_route['Deadweight']
aer_per_route = emissions_per_route.groupby('RouteID').agg({'EmissionsVoyageCO2InTons': np.sum, 'TransportWork': np.sum})
aer_per_route['AER'] = aer_per_route['EmissionsVoyageCO2InTons'] * 10 ** 6 / aer_per_route['TransportWork']
aer_per_route.reset_index(inplace=True)
In [12]:
Copied!
plt.figure(figsize=(16,8))
aer_per_route.sort_values('RouteID', inplace=True)
sns.barplot(x='RouteID', y='EmissionsVoyageCO2InTons', data=aer_per_route, palette='Reds')
plt.xticks(rotation=90)
plt.title('CO2 Emitted per route', fontsize=14)
plt.show()
plt.figure(figsize=(16,8))
aer_per_route.sort_values('RouteID', inplace=True)
sns.barplot(x='RouteID', y='EmissionsVoyageCO2InTons', data=aer_per_route, palette='Reds')
plt.xticks(rotation=90)
plt.title('CO2 Emitted per route', fontsize=14)
plt.show()
2) Average Efficiency Ratios per Route¶
In [13]:
Copied!
plt.figure(figsize=(16,8))
aer_per_route.sort_values('RouteID', inplace=True)
sns.barplot(x='RouteID', y='AER', data=aer_per_route, palette='Reds')
plt.xticks(rotation=90)
plt.title('Average Efficiency Ratio per route', fontsize=14)
plt.show()
plt.figure(figsize=(16,8))
aer_per_route.sort_values('RouteID', inplace=True)
sns.barplot(x='RouteID', y='AER', data=aer_per_route, palette='Reds')
plt.xticks(rotation=90)
plt.title('Average Efficiency Ratio per route', fontsize=14)
plt.show()
3) Capacity EEOIs per Route¶
Capacity EEOI is the EEOI metric, considering the vessel is fully loaded (at capacity)
In [14]:
Copied!
def set_violins_transparency(violins, alpha):
for violin in violins.get_children():
if isinstance(violin, PolyCollection):
violin.set_alpha(alpha)
def set_violins_transparency(violins, alpha):
for violin in violins.get_children():
if isinstance(violin, PolyCollection):
violin.set_alpha(alpha)
In [15]:
Copied!
# Drop outlier values for visual purposes
emissions_to_plot = emissions_per_route[emissions_per_route['EfficiencyMetricsCapacityEeoi'] < emissions_per_route['EfficiencyMetricsCapacityEeoi'].quantile(.99)]
# Drop outlier values for visual purposes
emissions_to_plot = emissions_per_route[emissions_per_route['EfficiencyMetricsCapacityEeoi'] < emissions_per_route['EfficiencyMetricsCapacityEeoi'].quantile(.99)]
In [16]:
Copied!
plt.figure(figsize=(16,8))
emissions_per_route.sort_values('RouteID', inplace=True)
violins = sns.violinplot(x='RouteID', y='EfficiencyMetricsCapacityEeoi', data=emissions_to_plot, color=".0")
set_violins_transparency(violins, 0.3)
sns.boxplot(x='RouteID', y='EfficiencyMetricsCapacityEeoi', data=emissions_to_plot, palette="Reds")
sns.stripplot(x='RouteID', y='EfficiencyMetricsCapacityEeoi', data=emissions_to_plot, color=".25")
plt.title("Capacity EEOI per Route", fontsize=14)
plt.xticks(rotation=90)
plt.show()
plt.figure(figsize=(16,8))
emissions_per_route.sort_values('RouteID', inplace=True)
violins = sns.violinplot(x='RouteID', y='EfficiencyMetricsCapacityEeoi', data=emissions_to_plot, color=".0")
set_violins_transparency(violins, 0.3)
sns.boxplot(x='RouteID', y='EfficiencyMetricsCapacityEeoi', data=emissions_to_plot, palette="Reds")
sns.stripplot(x='RouteID', y='EfficiencyMetricsCapacityEeoi', data=emissions_to_plot, color=".25")
plt.title("Capacity EEOI per Route", fontsize=14)
plt.xticks(rotation=90)
plt.show()
4) Timeseries visualization of Capacity EEOI¶
Visualize Capacity EEOI per route, based on when the voyages end
In [17]:
Copied!
emissions_per_route['EndDate'] = pd.to_datetime(emissions_per_route['EndDate'], format='mixed')
emissions_per_route['EndDateMonth'] = emissions_per_route['EndDate'].apply(lambda x: x.strftime('%Y-%m'))
emissions_per_route['EndDateMonth'] = pd.to_datetime(emissions_per_route['EndDateMonth'])
emissions_per_route = emissions_per_route.merge(mr_panamax_tanker_routes_df[['RouteID', 'LoadArea', 'DischargeArea']], how='left', on='RouteID')
emissions_per_route['RouteInfo'] = emissions_per_route.apply(lambda x: f"{x.VesselClass} - {x.LoadArea} --> {x.DischargeArea}", axis=1)
routes_to_compare = ["MR1 - 1", "MR1 - 2", "PT - 2"]
# Drop outlier values for visual purposes
emissions_to_plot = emissions_per_route[emissions_per_route['EfficiencyMetricsCapacityEeoi'] < emissions_per_route['EfficiencyMetricsCapacityEeoi'].quantile(.99)]
emissions_per_route['EndDate'] = pd.to_datetime(emissions_per_route['EndDate'], format='mixed')
emissions_per_route['EndDateMonth'] = emissions_per_route['EndDate'].apply(lambda x: x.strftime('%Y-%m'))
emissions_per_route['EndDateMonth'] = pd.to_datetime(emissions_per_route['EndDateMonth'])
emissions_per_route = emissions_per_route.merge(mr_panamax_tanker_routes_df[['RouteID', 'LoadArea', 'DischargeArea']], how='left', on='RouteID')
emissions_per_route['RouteInfo'] = emissions_per_route.apply(lambda x: f"{x.VesselClass} - {x.LoadArea} --> {x.DischargeArea}", axis=1)
routes_to_compare = ["MR1 - 1", "MR1 - 2", "PT - 2"]
# Drop outlier values for visual purposes
emissions_to_plot = emissions_per_route[emissions_per_route['EfficiencyMetricsCapacityEeoi'] < emissions_per_route['EfficiencyMetricsCapacityEeoi'].quantile(.99)]
In [18]:
Copied!
plt.figure(figsize=(16,8))
sns.lineplot(x="EndDateMonth", y="EfficiencyMetricsCapacityEeoi", hue="RouteInfo", data=emissions_per_route[emissions_per_route['RouteID'].isin(routes_to_compare)])
plt.show()
plt.figure(figsize=(16,8))
sns.lineplot(x="EndDateMonth", y="EfficiencyMetricsCapacityEeoi", hue="RouteInfo", data=emissions_per_route[emissions_per_route['RouteID'].isin(routes_to_compare)])
plt.show()
In [ ]:
Copied!